Editing OtherElectronicProjects

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 37: Line 37:
Multiple voltage power supply: a single device (i.e. a single 120VAC power plug) that provides various positive and negative voltages, probably most limited to less than one Amp. These are available, but in limited combinations: the hack proposed would allow any kind of extensibility.
Multiple voltage power supply: a single device (i.e. a single 120VAC power plug) that provides various positive and negative voltages, probably most limited to less than one Amp. These are available, but in limited combinations: the hack proposed would allow any kind of extensibility.


  you can make a (positive DC at least) adjustable power supply like that with a wall wart and a fifty-cent LM317  
  you can make a (positive DC at least) adjustable power supply like that with a wall wart and a fifty-cent LM317
 
and an LM 337 can provide negative DC adjustable power supply. probably both are better with a cap or two. exar makes a 4195 dual tracking +-15 VDC regulator (i like exar, they seem to have good knock-offs).
 


Anything with 12VDC, low voltage, low power, off-the-grid....  
Anything with 12VDC, low voltage, low power, off-the-grid....  
Line 47: Line 44:
Is it possible to make a signal generator that drives an antenna at the frequency of visible light? Here's the tho't: we hear multiple octaves, about ten or so (piano-type keyboard devices generally support several octaves, a guitar supports four or five octaves...). But we see just a little less than one octave (we see a low frequency red through orange, yellow, green, blue, upper frequency violet; below red is infrared, above violet is ultraviolet, an octave is just below red to just above violet). I think it's possible, conceivable anyway, that we can train ourselves to expand our visual perception: to recognize a little below and a little above what we're used to and possibly stretch enough to see the octave: an infrared color that is half the frequency of an ultraviolet color. Singers exercise their voices to extend their ranges both downward and upward. It may be possible. If so, for the person who achieves this, their sense of color harmony will change, for in recognizing an octave in light, they can make better sense of harmonic relations that are apparent in music (the fifth and fourth degrees of a scale, major and minor thirds and sixths, augmented and diminished chord...). But the trick is training, and for that it seems is needed an antenna that generates light and can be modulated to produce the entire visible spectrum and beyond, both above and below.
Is it possible to make a signal generator that drives an antenna at the frequency of visible light? Here's the tho't: we hear multiple octaves, about ten or so (piano-type keyboard devices generally support several octaves, a guitar supports four or five octaves...). But we see just a little less than one octave (we see a low frequency red through orange, yellow, green, blue, upper frequency violet; below red is infrared, above violet is ultraviolet, an octave is just below red to just above violet). I think it's possible, conceivable anyway, that we can train ourselves to expand our visual perception: to recognize a little below and a little above what we're used to and possibly stretch enough to see the octave: an infrared color that is half the frequency of an ultraviolet color. Singers exercise their voices to extend their ranges both downward and upward. It may be possible. If so, for the person who achieves this, their sense of color harmony will change, for in recognizing an octave in light, they can make better sense of harmonic relations that are apparent in music (the fifth and fourth degrees of a scale, major and minor thirds and sixths, augmented and diminished chord...). But the trick is training, and for that it seems is needed an antenna that generates light and can be modulated to produce the entire visible spectrum and beyond, both above and below.


  Jonathan Foote writes: see my speculations about this at http://www.rotorbrain.com/blog/2008/10/on-harmony-of-light.html  
  Jonathan Foote writes: see my speculations about this at http://www.rotorbrain.com/blog/2008/10/on-harmony-of-light.html
 
thanks lots! i checked, i liked Q a lot, tho' i didn't like A very much.
Please note that all contributions to Noisebridge are considered to be released under the Creative Commons Attribution-NonCommercial-ShareAlike (see Noisebridge:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel Editing help (opens in new window)