Machine Learning

From Noisebridge
(Difference between revisions)
Jump to: navigation, search
m (Datasets and Websites)
(Software Tools)
Line 111: Line 111:
*[ MayaVi2]
*[ MayaVi2]
**3D Scientific Data Visualization
**3D Scientific Data Visualization
==== Sound Tools ====
*[ Friture]
**Real-time spectrogram generation
*[ pyo]
**Real-time audio signal processing
=== Presentations and other Materials ===
=== Presentations and other Materials ===

Revision as of 22:59, 18 March 2012


Next Meeting

  • When: 3/8/2012
  • Where: 2169 Mission St. (back corner, Church or Turing classroom, undecided)
  • Topic: Bring your dataset to Noisebridge!
  • Details: Bring in a dataset you're interested in and share it, get opinions and ideas on how to work with it.
  • Who: Everyone and anyone!

Take the Noisebridge ML Survey

Take a survey and vote for what you want to learn!

Crowdsourced Q&A

Are you working on a data mining, machine learning, or statistics problem? Do you want some help? Consider sending an email to the mailing list about it! Also consider setting up a day to come in and talk about the project you're working on and get input from Spotsylvania reckless driving other ML people.

About Us

We're a loosely-knit stochastic federation of people who like Noisebridge and like machine learning. What is machine learning? It's broad field that typically involves training computer models to solve problems. How can you participate? Join the mailing list, send an email and introduce yourself. Show up to the next meeting, share your thoughts. Participate in projects or start your own. Go to workshops, write code at workshops, learn stuff, give workshops of your own! All are welcome.

Talks and Workshops

We've given lots of workshops and talks over the past year or so, here's a few. Many of the workshops we've given previously are recurring and will be given again, especially upon request!

Code and SourceForge Site

    git clone git://
  • Send an email to the list if you want to become an administrator on the site to get write access to the git repo!

Future Talks and Topics, Ideas

  • Random Forests in R (Mike S, 1/26)
  • Restricted Boltzmann Machines (Mike S, some day)
  • Analyzing brain cells (Mike S)
  • Deep Nets w/ Stacked Autoencoders (Mike S, some day)
  • Generalized Linear Models (Mike S, Erin L? some day)
  • Graphical Models
  • Working with the Kinect
  • Computer Vision with OpenCV

Mailing List


Datasets and Websites

Software Tools

Sound Tools

  • Friture
    • Real-time spectrogram generation
  • pyo
    • Real-time audio signal processing

Presentations and other Materials

Topics to Learn and Teach

NBML Course - Noisebridge Machine Learning Curriculum (work-in-progress)

CS229 - The Stanford Machine learning Course @ noisebridge

  • Supervised Learning
    • Linear Regression
    • Linear Discriminants
    • Neural Nets/Radial Basis Functions
    • Support Vector Machines
    • Classifier Combination [1]
    • A basic decision tree builder, recursive and using entropy metrics
  • Reinforcement Learning
    • Temporal Difference Learning
  • Math, Probability & Statistics
    • Metric spaces and what they mean
    • Fundamentals of probabilities
    • Decision Theory (Bayesian)
    • Maximum Likelihood
    • Bias/Variance Tradeoff, VC Dimension
    • Bagging, Bootstrap, Jacknife [2]
    • Information Theory: Entropy, Mutual Information, Gaussian Channels
    • Estimation of Misclassification [3]
    • No-Free Lunch Theorem [4]
  • Machine Learning SDK's
    • OpenCV ML component (SVM, trees, etc)
    • Mahout a Hadoop cluster based ML package.
    • Weka a collection of data mining tools and machine learning algorithms.
  • Applications
    • Collective Intelligence & Recommendation Engines

=== Meeting Notes===

Personal tools