
Nonlinear Dynamics in the EEG Analysis:Disappointments and PerspectivesMilan Palu�sInstitute of Computer Science, Academy of Sciences of the Czech RepublicPod vod�arenskou v�e�z�� 2, 182 07 Prague 8, Czech RepublicE-mail: mp@uivt.cas.cz, mp@santafe.eduSeptember 21, 1998AbstractSeveral recent thorough studies have con�rmed a nonlinear component in the EEG dynamics,however, signatures of low-dimensional chaos were not found. These results pose the question aboutadequacy of applying so called chaotic measures (dimensions, Lyapunov exponents) in EEG analysis.It is shown that the chaotic measures applied to stochastic or even noisy chaotic data do not bringinformation not accessible by linear approaches such as spectral analysis. Moreover, even states ofchaotic systems can be discernible by using an entropy rate computed from spectral densities. Theapplications of the chaotic measures do not seem to lead to a previously expected progress in thecomputerized EEG analysis, however, there are still ideas and tools developed in study of nonlinear(chaotic) systems, which could contribute to understanding the EEG dynamics and underlying brainprocesses as well as to improvement of clinical diagnostics. Perspectives for nonlinear dynamics inthe computerized EEG analysis are seen in detection and characterization of nonlinearity in EEGdynamics and search for its physiological signi�cance by comparing analyses of real EEG data and ofsignals generated by realistic models; in classifying complexity of the EEG signals by using entropyrates; or in detecting and characterizing synchronization of EEG signals recorded from di�erent loci.1 IntroductionDuring the last two decades there has been a sustained interest in describing neural processes andbrain-signals, especially the electroencephalogram (EEG), within the context of nonlinear dynam-ics and theory of deterministic chaos (see, e.g., [Rapp et al., 1989], [Ba�sar, 1990], [Jansen, 1991],[Freeman, 1992], for comprehensive reviews). If the nature of analyzed signals was actually low-dimensional, the published results could be of immense importance for theoretical neuroscience andneurological and psychiatric clinical practice. However, con�dence of results obtained from experi-mental data, such as �nite dimensions or positive Lyapunov exponents, and reliability of chaos-basedalgorithms in general, have recently come under question, and alternative methods for identifyingpossible nonlinear determinism in experimental time series have been proposed (see [Weigend & Ger-shenfeld, 1993], [Palu�s, 1995], and references therein). Employing some of these methods, Palu�s[1996a] has detected a nonlinear component in EEG recordings of normal healthy volunteers, how-ever, signatures of low-dimensional chaos were not found. Similar results have been independentlyreported by Pritchard et al. [1995], Rombouts et al. [1995] and Stam et al. [1995]. Theiler &Rapp [1996], Prichard & Theiler [1994], Theiler et al., [1992] and Casdagli [1992] also rejected low-dimensional chaos and con�rmed nonlinearity in the EEG, however, they report only a weak evidencefor nonlinearity in normal EEG.Estimation from time series of descriptive measures such as dimensions, Lyapunov exponents orKolmogorov entropy, derived from theory of deterministic chaos (\chaotic measures") is well estab-lished in the case of data generated by low-dimensional deterministic dynamical systems in numericaland laboratory experiments. Questions are naturally raised about applicability of the chaotic meas-ures when analyzing data from real-world systems, which are either stochastic or a�ected by numerousexternal inuences, which cannot be described in any other way than a stochastic component in sys-tem dynamics. Analyzing physiological time series such as the EEG, many authors have realized that1



low-dimensional chaos in such systems is improbable, however, they have demonstrated that formalestimates of the chaotic measures may possess some discriminating power with respect to data recor-ded in di�erent experimental conditions [Layne et al., 1986], [Mayer-Kress & Layne, 1987], [Koukkouet al., 1993], [Wackermann et al., 1993]. This \relative characterization" of di�erent datasets maysurely have its importance in diagnostics, however, it is questionable whether applications of thechaotic measures for such kind of data is really useful and/or necessary. This question is importantfrom both practical and theoretical points of view. When the chaotic measures, designed for char-acterization of low-dimensional dynamics, are applied to analysis of high-dimensional or stochasticsystems, precision of their estimates, their robustness with respect to noise, or their sensitivity tochanges in underlying dynamics can hardly be established. In theoretical aspect, correct interpreta-tion of obtained results is unclear, while using the original meaning and interpretations of the chaoticmeasures, i.e., using a \low-dimensional language" for high-dimensional or stochastic systems can bemisleading.Searching arguments favorable for applications of the chaotic measures in the EEG analysis,many authors claim that linear (spectral) approaches to the EEG analysis are inadequate because ofnonlinear and possibly chaotic character of the EEG. Some researchers consider successful applicationsof the chaotic measures in a \relative quanti�cation", i.e. an ability to distinguish with a statisticalsigni�cance EEG signals recorded in di�erent physiological/pathological conditions as an evidence fora chaotic nature of the EEG. In order to demonstrate that the above statements are not correct, wepresent results of two di�erent, although interconnected studies. In the �rst study (Sec. 2, for detailssee [Palu�s, 1997a]) it has been found, that the \level of chaos" of chaotic systems is \translated"into their linear properties. More speci�cally, di�erent states of chaotic systems (states with di�erentKolmogorov entropy/positive Lyapunov exponents) can be distinguished by an appropriate measurebased on power spectra estimated from time series, generated by the chaotic systems. I.e., a linearapproach (spectral analysis) can be useful in classi�cation of (nonlinear) chaotic systems. On theother hand, in the second study (Sec. 3, for details see [Palu�s, 1998]) we examine the behaviourof the chaotic measures, in particular, of the positive Lyapunov exponents when estimated from a)noisy chaotic data, b) from nonchaotic (linear stochastic) data. It has been found that the estimatedLyapunov exponents failed to distinguish di�erent noisy chaotic time series when relatively smallscales were used. The distinction could be reestablished by using larger scales. Using larger scales,however, the estimated Lyapunov exponents are determined by macroscopic statistical propertiesof the series such as autocorrelations. The latter �nding is one of the explanations why formallyestimated Lyapunov exponents could lead to (seemingly) successful results, even when applied tononchaotic data. In such cases the formally estimated Lyapunov exponents would yield randomvalues only for data with equivalent statistical properties, while the so-called successful results (i.e.,statistically signi�cant distinction of EEG signals recorded in di�erent physiological/pathologicalconditions) could be caused by a trivial di�erence in statistical properties of the data sets, such asdi�erent autocorrelations, di�erent ranges of data values, di�erent variances, or di�erent noise levels.In conclusion, we state that although the chaotic measures do not seem to lead to the previouslyexpected progress in the computerized EEG analysis, there are still ideas and tools developed instudy of nonlinear (chaotic) systems, which could contribute to understanding the EEG dynamicsand underlying brain processes as well as to improvement of clinical diagnostics. The basic principle tokeep is to detect and characterize real phenomena present in EEG signals. Thus we see a perspectivefor nonlinear dynamics in the computerized EEG analysis, e.g., in detection and characterization ofnonlinearity (and search for its physiological signi�cance by comparing analyses of real EEG data andof signals generated by realistic models), in classifying complexity of the EEG signals by using entropyrates, or in detecting and characterizing synchronization of EEG signals recorded from di�erent loci.2 Entropy Rates of Dynamical Systems and GaussianProcessesLet fxig be a time series, i.e., a series of measurements done on a system in consecutive instantsof time i = 1; 2; : : :. The time series fxig can be considered as a realization of a stochastic pro-cess fXig, characterized by the joint probability distribution function p(x1; : : : ; xn), p(x1; : : : ; xn) =Prf(X1; : : : ; Xn) = (x1; : : : ; xn)g. The entropy rate of fXig is de�ned [Cover & Thomas, 1991] as:h = limn!1 1nH(X1; : : : ; Xn); (1)2



where H(X1; : : : ; Xn) is the entropy of the joint distribution p(x1; : : : ; xn):H(X1; : : : ; Xn) = �Xx1 : : :Xxn p(x1; : : : ; xn) log p(x1; : : : ; xn): (2)No general approach to estimating the entropy rates of stochastic processes has been established,except of simple cases such as �nite-state Markov chains [Cover & Thomas, 1991]. However, if fXigis a zero-mean stationary Gaussian process with spectral density function f(!), its entropy ratehG, apart from a constant term, can be expressed using f(!) [Chiang, 1987], [Ihara, 1993], [Anh &Lunney, 1995] as: hG = 12� Z ��� log f(!)d!: (3)Alternatively, the time series fxig can be considered as a projection of a trajectory of a dynamicalsystem, evolving in some measurable state space. The dynamical complexity of a (chaotic) dynam-ical system can also be characterized by its entropy rate. As a de�nition of the entropy rate of adynamical system, known as the Kolmogorov-Sinai entropy (KSE) [Cornfeld et al., 1982], [Petersen,1983], [Sinai, 1976] we can consider the equation (1), however, the variables Xi should be understoodas m-dimensional variables, according to a dimensionality of the dynamical system [Schuster, 1988].If the dynamical system is evolving in a continuous measure space, then any entropy depends on apartition chosen to discretize the space and the KSE is de�ned as a supremum over all �nite partitions[Cornfeld et al., 1982], [Petersen, 1983], [Sinai, 1976]. The KSE is a topological invariant, suitable forclassi�cation of dynamical systems or their states, and is related to the sum of the system's positiveLyapunov exponents (LE) according to the theorem of Pesin [1977].Dynamics of a stationary Gaussian process is fully described by its spectrum. Therefore the con-nection (3) between the entropy rate of such a process and its spectral density f(!) is understandable.The estimation of the entropy rate of a Gaussian process is reduced to the estimation of its spectrum.If a studied time series was generated by a nonlinear, possibly chaotic, dynamical system, itsdescription in terms of a spectral density is not su�cient. Indeed, realizations of isospectral Gaussianprocesses are used in the surrogate-data based tests in order to discern nonlinear (possibly chaotic)processes from colored noises [Theiler et al., 1992], [Palu�s, 1995]. On the other hand, there are res-ults indicating that some characteristic properties of nonlinear dynamical systems may be \projected"into their \linear properties", i.e., into spectra, or equivalently, into autocorrelation functions: Sigeti[1995] has demonstrated that there may be a relation between the sum of positive Lyapunov expo-nents (KSE) of a chaotic dynamical system and the decay coe�cient characterizing the exponentialdecay at high frequencies of spectra estimated from time series generated by the dynamical system.Asymptotic decay of autocorrelation functions of such time series is ruled by the second eigenvalueof the Perron-Frobenius operator of the dynamical system [Grossmann & Thomae, 1977], [Mori etal., 1981]. Lipton & Dabke [1996] have also investigated asymptotic decay of spectra in relation toproperties of underlying dynamical systems.In a numerical study using a number of discrete and continuous chaotic systems, Palu�s [1997a] hasinvestigated a possible relation between the Kolmogorov-Sinai entropy of a dynamical system and theentropy rate (3) of a Gaussian process isospectral to time series generated by the dynamical system,thereafter referred to as \GPER." The results suggest that such a relation as a nonlinear one-to-onefunction may exist when the Kolmogorov-Sinai entropy varies smoothly with variations of system'sparameters, but is broken in critical states near bifurcation points.For an example of this relation we will consider the discrete baker map, de�ned as(xn+1; yn+1) = ��xn; 1�yn�for yn � �, or: (xn+1; yn+1) = �0:5 + �xn; 11� � (yn � �)� (4)for yn > �; 0 � xn; yn � 1, 0 < �; � < 1, � was set to � = 0:25. For this system the positiveLyapunov exponent �1, or, equivalently, the Kolmogorov{Sinai entropy can be expressed analyticallyas the function of the parameter � [Farmer et al., 1983], [Hentschel & Procaccia, 1983]:�1(�) = � log 1� + (1� �) log 11� �: (5)3



Varying the parameter � from 0.01 to 0.49 with step 0.005, ninety-seven system states withdi�erent positive Lyapunov exponents �1 were studied. The component y was recorded.1 In eachsystem state studied, �fteen time series of length 16,384 samples were linearly transformed in orderto have zero mean and unit variance2 and their periodograms3 were computed using the fast Fouriertransform (FFT) [Press et al., 1986]. To prevent numerical underow, the periodograms were shifted4by +1, i.e., f(!) + 1 was used instead of f(!) in Eq. (3).In Figures 1a-c the comparison of the GPER with the LE (KSE) for the baker map (4) arepresented: The LE as the analytic function (5) of the parameter � (Fig. 1a), the GPER, estimatedfrom time series (using their periodograms), plotted against � (Fig. 1b), and the GPER plottedagainst the LE (Fig. 1c). The latter plot demonstrates that in the case of the chaotic baker map (4)the LE/KSE and the GPER are related by a nonlinear one-to-one function. Palu�s [1997a] presentsalso examples of systems in the critical states, when the GPER{KSE relation is broken, here wecon�ne ourselves only to the above demonstration that such a relation exists.3 The Largest Lyapunov Exponent and Colored NoisesGiven a scalar time series x(t), an m-dimensional trajectory is reconstructed using the time-delaymethod [Takens, 1981] as x(t) = fx(t); x(t + �); : : : ; x(t + [m � 1]�)g, where � is the delay timeand m is the embedding dimension. A neighbour point x(t0) is located so that the initial distance�I , �I = jjx(t) � x(t0)jj, is smin � �I � smax. jj:jj means the Euclidean distance. The minimumand maximum scales smin and smax, respectively, are chosen so that the points x(t) and x(t0) areconsidered to be in a common \in�nitesimal" neighborhood. After an evolution time T 2 f1; 2; 3; : : :g,the resulting �nal distance �F is calculated: �F = jjx(t+T )�x(t0+T )jj. Then the local exponentialgrowth rate per time unit is: �local1 = 1T log(�F =�I): (6)To estimate the overall growth rate, in the case of deterministic dynamical systems the largest Lya-punov exponent (LLE) �1, the local growth rates are averaged along the trajectory:�1 = h�local1 i = 1T [hlog(�F )i � hlog(�I)i]; (7)where h:i denotes averaging over all initial point pairs ful�lling the condition smin � �I � smax.These ideas are applied in the �xed evolution time program for estimating LLE as proposed byWolf et al. [1985]. More details, as well as the code of the program FET1, used in this study, can befound in [Wolf et al., 1985].The set P of numerical parameters:P = fm; �; T; smin; smaxg (8)is chosen by a user.The set of 97 baker series with di�erent �1(�), generated as described in the previous section, is anideal material for simulating the task of relative characterization, i.e., the task of distinguishing andordering the series according to their \chaoticity", i.e., according to their �1 . The exact dependenceof �1(�) on the parameter �, based on the analytic formula (5), is displayed in Fig. 1a. Figure 1dpresents estimates of �1 from noise-free data using the following numerical parameters: m = 2, � = 2,T = 1, smin = 0:01SD, i.e., 1% of the standard deviation of a particular series, smax is always de�nedas smax = 10smin in this study. The �1 estimates in Fig. 1d agree with the correct �1(�) values onlyfor small �, while the majority of the results in Fig. 1d are overestimated. It is possible to \tune"the results by changing some parameters from P (8), e.g., the estimates would decrease using largerevolution time T . Trying to simulate a real problem of classifying experimental time series, where1Thus we concentrate to the chaotic dynamics in the y direction, which is equivalent to a one-dimensional system knownas the tilted tent map [Hilborn, 1994].2Note that the GPER (3) is variance-dependent. Therefore all analyzed time series were rescaled in order to have unitvariance so that the GPER should classify the series according to their dynamics, without the inuence of the variance.3I.e., discrete estimates of the spectral density obtained as squared magnitudes of the Fourier coe�cients. The integralin (3) is then computed as a sum over the 8192 periodogram bins.4This shift is equivalent to an addition of white noise to the original time series and thus it could worsen distinction ofsystem states with similar spectra. On the other hand, presence of a few periodogram bins with magnitude close to zerocould bias the GPER estimate downwards and obscure the dependence of GPER on a system parameter.4



the correct values of �1 are unknown (or, in strict mathematical sense they do not exist), it may bedangerous to tune the parameters P for each estimate individually.5 As the methodologically correctapproach we consider using the same parameters P for the whole set of time series, i.e., in each plotof the type of Fig. 1d the estimated LLE's were obtained using the same numerical parameters.The only varying parameter is the parameter � from (4), used in generating the series. Then, weare not interested in absolute values of estimated LLE's, but in relative quanti�cation of di�erentseries. In this case, the results can be considered as successful, if a similar curve as that in Fig.1a was obtained, irrespectively of a scale on the ordinate. The principal shape of the theoreticalcurve �1(�) is reproduced by the �1 estimates in Fig. 1d. However, the curve is not smooth due tonumerical instability of the estimates. Fluctuations of the estimates occur due to a relatively shorttime series length (1k = 1024 samples) used in the LLE estimation. For a signi�cant decrease of theuctuations and obtaining smooth curves resembling the theoretical one (Fig. 1a) the series lengthmust be increased by one or two orders of magnitude. We will, however, continue the study using 1kseries and consider the results in Fig. 1d as a \good" classi�cation considering \available" amount ofdata.In Figures 1e and 1f the same LLE estimates using the same parameters as in Fig. 1d arepresented, but the scales smin = 0:1SD and smin = 1:0SD, respectively, were used. The largestLyapunov exponents �1, estimated from the noise-free low-dimensional chaotic series, are stable withrespect to di�erent scales (cf. Figs. 1d and 1e), only in the case of the largest scales (Fig. 1f) theestimates have lower values and the curve �1(�) is partially distorted, but still able to classify theseries in the relative sense.The situation is di�erent when analyzing data with noise. Here we consider additive Gaussiannoise added to the data after they have been generated. The term \5% of noise" means that thestandard deviation of the added noise is equal to 5% of the SD of the noise free data.With 5% of noise in the data the classi�cation of the series is practically impossible for smin =0:01SD (Fig. 2a); possible, though with a higher error rate for smin = 0:1SD (Fig. 2b), while forsmin = 1:0SD (Fig. 2c) the results are almost as good as for the noise-free data (Fig. 1f). Thus,the generally known advice that the scales, used in estimating the chaotic measures, should be abovethe noise level, seems to be valid. Considering, however, that the chaotic measures are de�ned interms of vanishing distances between points, one could doubt what is actually measured using thelarge, macroscopic scales. In this study, is it really the exponential divergence of nearby trajectories,which is reected in the results in Figs. 1e,f and 2b,c, where the larger scales, i.e., smin = 0:1SD andsmin = 1:0SD, respectively, were used?Searching for an answer, the technique of surrogate data [Theiler et al., 1992], [Palu�s, 1995] wasused. The surrogate data to an \observed" series are, in this case, realizations of a Gaussian linearstochastic process with the same spectrum as the \observed" series.For each time series analyzed above, a set of 15 realizations of the surrogates were constructedand the largest Lyapunov exponents �1 were estimated using the same parameters P as for the �1of the relevant \observed" series. The results from the surrogates are presented in plots 2d,e,f. (Theresults from the surrogates related to the noise-free data are practically the same as the results fromthe surrogates related to the data with the additive noise.)Exploring relatively small scales (smin = 0:01SD, Fig. 2d), LLE's �1 estimated from the surrogatesdo not reect the \chaoticity", i.e., the dependence �1(�) of the original data. Such a result could beexpected as far as the chaotic dynamics and nonlinear properties of the original data were destroyedby phase randomization [Theiler et al., 1992], [Palu�s, 1995] in the surrogates. Using larger scalessmin = 0:1SD and 1.0SD (Figs. 2e and 2f, respectively), however, a relative classi�cation, similar tothe ordering of the baker series according to their �1, is again observed, though, in the surrogate datathere is no exponential divergence of trajectories, or even no trajectories in the deterministic sense!These time series are realizations of Gaussian linear stochastic processes, thus their dynamics arefully characterized by their power spectra or, equivalently, by their autocovariance functions. In theprevious section we have seen that the \level of chaos" given by LLE �1 of the original baker series wasreected also in their linear properties, in particular, the GPER's, obtained from the power spectra,provided the same classsi�cation as the LLE's �1 (or KSE). The surrogate data preserve the linearproperties of the original data, namely the spectrum and the autocorrelation function, therefore thesurrogate data related to the baker series with di�erent LLE's �1 can be considered as colored noiseswith di�erent autocorrelations/spectra. In this situation one can infer that the algorithm for the5This may lead to a subjective bias and false positive results. Even from white-noise data any positive value of the �1estimate may be obtained by tuning the parameters P [D�ammig & Mitschke, 1993].5



largest Lyapunov exponent distinguishes linear stochastic time series with di�erent autocorrelationfunctions. How is it possible?The LLE algorithm explores changes of initial distances �I of pairs of points into �nal distances �Fafter an evolution time T. Consider a time series generated by white noise (independent identicallydistributed { IID process). For any initial distance �I , the �nal distance �F is a random numberindependent of �I . The averaged h�F i is then equal to the overall average distance of the data points.The averaged initial distance h�Ii is inuenced by the choice of the scales smin; smax. Then, choosingthe scales so that h�Ii is smaller than h�F i, a positive estimate of �1 is obtained. When considerednoise is not white but \coloured", i.e., there is some correlation C(T ) between x(t) and x(t+T ), theincrease of distance after the time T is smaller for series with stronger correlations, i.e., the largerC(T ), the smaller is the estimated �1, and vice versa.D�ammig and Mitschke [1993] have derived analytic formulae for the �1 estimates when applyingthe considered LLE algorithm to white noise and a very special kind of coloured noise (white noise�ltered by a \brickwall �lter", the �lter function is equal to one for a de�ned spectral bandwidth,and to zero otherwise). As one could expect, �1 estimated from white noise depends exclusively onthe parameters P , in the case of the coloured noises �1 depends on P and on the spectral bandwidth.Thus for �xed P the estimated Lyapunov exponent �1 classi�es the series according to their spectra,or, equivalently, according to their autocorrelation functions.In the case studied here, where the coloured (autocorrelated) noises { the surrogate data { weregenerated according to given nontrivial spectra, derivation of an analytic formula is probably im-possible, however, the dependence of the �1 estimates on autocorrelations has been demonstratedabove (Figs. 2e,f).4 Discussion and ConclusionAlmost two decades ago the chaotic measures became frequently used in analysis of complex timeseries such as the EEG as an alternative to stochastic, mostly linear techniques. Deterministic chaoshas been usually considered as an opposite alternative to random e�ects in attempts to explaincomplicated dynamics. Recent results indicate, however, that low-dimensional chaos may be rathera rare than ubiquitous phenomenon, especially when considering open, real-world systems, such asthose studied in physiology and medicine; or, the strict separation between deterministic-chaotic andstochastic dynamics may be impossible [Ellner & Turchin, 1995]. And even in data generated by a low-dimensional chaotic system, microscopic properties, which are characterized by the chaotic measures,may be unaccessible due to �nite precision and measurement noise. In such cases, when the chaoticmeasures are estimated using scales larger than the noise scale, the chaotic measures do not \measurechaos" anymore, but reect macroscopic statistical properties of the studied data. In other words,formally successful application of the chaotic measures in a \relative quanti�cation", i.e. an ability todistinguish with a statistical signi�cance EEG signals recorded in di�erent physiological/pathologicalconditions cannot be considered as an evidence for a chaotic nature of the EEG. The chaotic measuresthen do not reect di�erent dimensionality or di�erent rate of exponential divergence of trajectories ofhypothetical underlying dynamical systems, but the statistical signi�cances can be caused by a trivialdi�erence in statistical properties of the data sets, such as di�erent autocorrelations, as demonstratedabove for the largest Lyapunov exponent estimator, but also by di�erent ranges of data values,di�erent variances, or di�erent noise levels. Then also the statement that the information extractedfrom EEG signals by using the chaotic measures is entirely new, i.e., independent from informationobtained by linear analysis tools, is not correct. Just the opposite has been demonstrated above,that states of chaotic systems can be characterized by information obtained from spectral densities.Therefore the classical spectral analysis should not be underestimated considering nonlinear characterof the EEG. The question is just the �nal \compression" of information contained in estimated spectraldensities (periodograms), i.e., whether the conventional spectral bands powers are adequate, or insome cases di�erent quantities should be considered, such as the above entropy rate GPER.In general, entropy rates (see, e.g., [Cover & Thomas, 1991], [Palu�s, 1996b] and references therein),i.e., the rates of information creation by a system, deserve more attention in analysis of complex timeseries such as the EEG. The entropy rates can be de�ned for both chaotic and stochastic systems,thus their applications are not jeopardized by possible evidence for or against a particular dynamicalmechanism underlying the EEG. Although the exact entropy rate of a continuous system may be un-accessible from data, there is always a possibility to estimate its \coarse-grained" versions, suitablefor classi�cation of complex time series [Palu�s, 1996b]. Also, the periodogram-based entropy rate6



GPER itself could be used as a computationally cheap tool for classi�cation of signals recorded fromstochastic or chaotic systems in di�erent states; while discrepancies in the relation between the GPERand a nonlinear entropy rate (Kolmogorov-Sinai entropy or positive Lyapunov exponent or other non-linear entropy-rate equivalent such as those introduced in [Palu�s, 1996b]; a comprehensive review of\complexity" measures, related to entropies and entropy rates can be found in [Wackerbauer et al.,1994]) could be considered for detecting bifurcation onsets in structurally evolving systems [Palu�s,1997a], or, in the EEG context, e.g., for detecting an onset of an epileptic seizure.Another important task for applications of nonlinear dynamics in EEG analysis is the detectionand characterization of nonlinearity and search for its physiological signi�cance by comparing ana-lyses of real EEG data and of signals generated by realistic models. While several studies have beenalready published (see the references in Introduction) which provide �rm evidence for existence ofnonlinearity in the EEG, only a few authors yet tried to characterize nonlinear structures found inthe EEG (e.g., [Casdagli et al., 1997]), or even to provide comparisons with models (e.g., [Stam etal., this volume]). It might be very interesting to compare results of nonlinear analyses of real EEGdata and arti�cial data generated by complex structural models such as that introduced by Wright& Liley [1996].The last but not the least remark in this paper is devoted to the quickly developing �eld ofsynchronization of chaotic systems. The strongest de�nition of synchronization requires that thedi�erence between states of synchronized systems asymptotically vanishes. This de�nition is calledidentical synchronization [Parlitz et al., 1996] while the notion of generalized synchronization requiresthat states of coupled systems are (asymptotically) related by some (possibly complex) function[Rulkov et al., 1995; Kocarev & Parlitz, 1996]. In the classical case of periodic self-sustained oscillat-ors, phase synchronization is usually de�ned as locking of phases �1;2:n�1 �m�2 = const:; (9)for integer n and m, while the amplitudes can be di�erent. Recently, Rosenblum et al. [1996]have discovered the phase synchronization in a case of coupled chaotic systems, where the phaseentrainment (locking) is described as jn�1 �m�2j < const:; (10)while the amplitudes of the two systems may be completely uncorrelated, i.e., linearly independent.Considering the �eld of analysing physiological signals, it is important that many of the results foundfor the phase synchronization of chaotic systems are valid for stochastic oscillators as well [Rosenblumet al., in press]. The ideas and methods for detection and characterization of the phase synchroniza-tion have already found successful applications in analyses of data from cardio-respiratory interaction[Sch�afer et al. 1998], [Hoyer et al. 1998], [Palu�s & Hoyer, 1998], and we believe that related methodsfor the phase synchronization detection [Palu�s, 1997b], [Palu�s & Hoyer, 1998] can be used in analysingrelations of EEG signals recorded from di�erent loci.In conclusion, we state that although the chaotic measures do not seem to lead to the previouslyexpected progress in the computerized EEG analysis, there are still ideas and tools developed instudy of nonlinear (chaotic) systems, which could contribute to understanding the EEG dynamicsand underlying brain processes as well as to improvement of clinical diagnostics. We see perspectivesfor nonlinear dynamics in the computerized EEG analysis namely in detection and characterizationof nonlinearity in EEG dynamics, in classifying complexity of the EEG signals by using entropy rates,or in detecting and characterizing synchronization of EEG signals recorded from di�erent loci.
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Figure 1: (a{c) Results from the GPER-LE/KSE relation study for the baker map: a) The Lyapunovexponent as the analytic function of the parameter �. b) The GP entropy rates estimated from 15realizations of 16k time series (mean { thick line, mean�SD { thin lines, coinciding with the mean) fordi�erent values of the parameter � varying from 0.01 to 0.49 by step 0.005. c) Plot of GPER (the sameline codes as in b) vs. LE. (d{f) Estimates of the positive Lyapunov exponent from noise-free baker seriesplotted as functions of the parameter �. The parameters used in estimations were N = 1024, m = 2,� = 2, T = 1 in all plots, while the scales were de�ned as follows: smin = 0:01SD (d), smin = 0:1SD (e),and smin = 1:0SD (f).
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Figure 2: Estimates of the positive Lyapunov exponent from noisy (5% of noise) baker series (a, b, c)and their surrogate data (d, e, f), plotted as functions of the parameter �. In plots d-e-f solid lines anddashed lines depict mean �1 and mean�SD, respectively, of 15 realizations of the surrogates for eachvalue of �. The scales smin = 0:01SD (a, d), smin = 0:1SD (b, e), and smin = 1:0SD (c, f) were used. Theparameters N = 1024, m = 2, � = 2, T = 1 were used in all estimations.
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