
A Review of Parametric Modelling Techniques for EEG AnalysisJ. Pardey, S. Roberts�, L. TarassenkoUniversity of Oxford, Medical Engineering Unit, 43 Banbury Road, Oxford OX2 6PE�Imperial College of Science, Technology & Medicine, Exhibition Road, London SW7 2BTABSTRACT | This tutorial provides an introduction to the use of parametric modelling techniquesfor time series analysis, and in particular the application of autoregressive modelling to the analysisof physiological signals such as the human electroencephalogram. The concept of signal stationarity isconsidered and, in the light of this, both adaptive models, and non{adaptive models employing �xed oradaptive segmentation, are discussed. For non{adaptive autoregressive models, the Yule{Walker equationsare derived and the popular Levinson{Durbin and Burg algorithms are introduced. The interpretation ofan autoregressive model as a recursive digital �lter and its use in spectral estimation are considered, andthe important issues of model stability and model complexity are discussed.Keywords: autoregressive modelling, biomedical signal processing, human sleep EEG1 INTRODUCTIONParametric modelling is a technique for time series analysis in which a mathematical model is �tted to asampled signal. If the model forms a good approximation to the signal's observed behaviour it can thenbe used in a wide range of applications, such as spectral estimation, linear prediction coding (LPC) fordata compression, speech synthesis, and feature extraction for pattern classi�cation problems.The mathematical model that is most widely used is a rational transfer function, the exact form ofwhich is determined by estimating suitable values for its free parameters. If all of these parameters lie inthe transfer function's denominator then the model is termed an all{pole or autoregressive (AR) model,while an all{zero or moving{average (MA) model has all of its free parameters in the numerator. A modelwith free parameters in both the numerator and denominator is then termed a pole{zero or autoregressivemoving{average (ARMA) model.Furthermore, in adaptive models the values of the free parameters are updated with the arrival of each1



new data sample, whereas in non{adaptive models the parameters are chosen so as to give the best �t toa sequence of data samples. Because of this, non{adaptive models require that the signal is stationary,i.e. that its statistical characteristics, such as average amplitude and frequency content, do not vary withtime. Most signals, including speech and the electroencephalogram (EEG), are non{stationary (i.e. theyhave a time{varying frequency spectrum), although they can be considered locally stationary over shorttime intervals. For such signals, either an adaptive model can be used, or the signal can be dividedinto su�ciently short, quasi{stationary segments and a non{adaptive model �tted to each segment. Thelength of these segments can be either �xed, typically at one second for EEG analysis, or variable, inwhich case the signal is continuously monitored for departures from stationarity and segment boundariesare placed accordingly.1The key to the performance of parametric modelling techniques, however, lies in the relative e�ective-ness of the various algorithms that can be used to estimate the free parameters. For non{adaptive ARmodels the two most popular algorithms are the Levinson{Durbin algorithm and the Burg algorithm,while for adaptive AR models the Kalman �ltering algorithm2;3 is commonly used. This is summarisedin Figure 1.The relative simplicity and reliability of the Levinson{Durbin and Burg algorithms has made non{adaptive AR modelling by far the most popular method of time series analysis to date, and it is thismethod that will be considered in the remainder of the paper. The development of these algorithmsin such diverse areas as economic forecasting and geophysics, however, has led to confusion both in theterminology used and in the di�erent perspectives from which the algorithms are derived. One purposeof this paper is thus to streamline the approach to AR modelling and algorithm development. The ARmodelling technique is formulated in Section 2, where the Yule{Walker equations are derived and theLevinson{Durbin and Burg algorithms are presented. In Section 3 the interpretation of the AR model asa recursive digital �lter, its use in spectral estimation, and its stability are considered, while the choice ofmodel complexity is investigated in Section 4. Section 5 summarises the material presented in Sections 2to 4, and concludes with a few comments on adaptive AR modelling.
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2 AUTOREGRESSIVE MODELLINGThe AR modelling technique can be formulated either in the frequency domain as a spectral matchingproblem or in the time domain as a linear prediction problem.4 The latter approach, which is moreintuitive and will therefore be adopted here, assumes that the value of the current sample, sn, in a datasequence, s1; s2; : : : ; sN , can be predicted as a linearly weighted sum of the p most recent sample values,sn�1; sn�2; : : : ; sn�p, where p is the model order and is generally chosen to be much smaller than thesequence length, N . If ~sn denotes the predicted value of sn, then this can be expressed as follows:~sn = � pXi=1 apisn�i (1)where the weight, api, denotes the ith coe�cient of the pth{order model. This is depicted in Figure 2.The error between the actual value and the predicted value is called the forward prediction error, epn,and is given by: epn = sn � ~sn = sn + pXi=1 apisn�i (2)The mean of the squared prediction errors for the entire data sequence, s1; s2; : : : ; sN , is equal to theprediction error power, E (assuming the missing samples prior to s1 to be zero in the calculation of~s1; ~s2; : : : ; ~sp): E = 1N NXn=1 e2pn = 1N NXn=1(sn � ~sn)2 = 1N NXn=1(sn + pXi=1 apisn�i)2 (3)Note that the use of (1) assumes that the signal being modelled is linear, even though the process (orprocesses) generating it may be non{linear, in which case the use of non{linear methods to model thesignal would perhaps be more appropriate. For applications in EEG analysis, however, a comparison ofnon{linear forecasting methods versus the predictive performance | as given by (2) | of AR modellingtechniques has shown that the latter gives very similar, or even slightly improved performance overnon{linear methods.5Given that the technique is a suitable one, therefore, an estimate is required of the coe�cients,ap1; ap2; : : : ; app. Typically a least{squares error criterion is used, whereby the best �t of the pth{ordermodel in (1) to a given data sequence is obtained by �nding the set of coe�cients for which E in (3) isminimised. This is achieved by setting:@E@api = 0; for 1 � i � p3



which yields the following set of p equations in p unknowns: 1N NXn=1 sn�1sn�1! ap1 +  1N NXn=1 sn�2sn�1! ap2 + � � � +  1N NXn=1 sn�psn�1!app = � 1N NXn=1 snsn�1! 1N NXn=1 sn�1sn�2! ap1 +  1N NXn=1 sn�2sn�2! ap2 + � � � +  1N NXn=1 sn�psn�2!app = � 1N NXn=1 snsn�2!... ... ... ... 1N NXn=1 sn�1sn�p! ap1 +  1N NXn=1 sn�2sn�p! ap2 + � � � +  1N NXn=1 sn�psn�p! app = � 1N NXn=1 snsn�p!(4)Solving these for ap1; ap2; : : : ; app and substituting the values obtained back into (3) gives an expressionfor the minimum prediction error power, denoted by Ep:Ep =  1N NXn=1 s2n! + pXi=1  1N NXn=1 snsn�i!api (5)However, given that the autocorrelation function of an in�nite data sequence, s�1; : : : ; s1, is given by:Ri = limN!1 1N NXn=1 snsn�i; for �1 < i <1where Ri = R�i (i.e. an even function of i) if the data sequence is stationary, so the parenthesisedterms in (4) and (5) are just estimates of the �rst p+ 1 terms of the truncated autocorrelation function,R0; R1; : : : ; Rp, using only the �nite data sequence, s1; s2; :::; sN :~Rji�jj = 1N NXn=1 sn�isn�j; for 0 � i � p and 1 � j � p (6)where the missing samples prior to s1 are assumed to be zero, as in (3). The use of ji� jj indicates that~Rji�jj depends only on the di�erence between i and j (assuming stationarity) and not on their individualvalues. Substituting the values of ~R0; ~R1; : : : ; ~Rp obtained using (6) into (4) and (5), and rearranging (4)in matrix form gives: 266666666664 ~R0 ~R1 � � � ~Rp�1~R1 ~R0 � � � ~Rp�2... ... ...~Rp�1 ~Rp�2 � � � ~R0 377777777775266666666664 ap1ap2...app 377777777775 = �266666666664 ~R1~R2...~Rp 377777777775Ep = ~R0 + pXi=1 api ~Ri (7)4



Alternatively, the matrix equation in (7) can be augmented to include the expression for Ep:2666666666666664 ~R0 ~R1 ~R2 � � � ~Rp~R1 ~R0 ~R1 � � � ~Rp�1~R2 ~R1 ~R0 � � � ~Rp�2... ... ... ...~Rp ~Rp�1 ~Rp�2 � � � ~R0 37777777777777752666666666666664 1ap1ap2...app 3777777777777775 = 2666666666666664 Ep00...0 3777777777777775 (8)Equations (7) or (8) are called the Yule{Walker equations, and describe the p unknown AR coe�cientsin terms of the p + 1 estimated autocorrelation coe�cients. Solving the Yule{Walker equations forap1; ap2; :::; app is termed the autocorrelation method of AR parameter estimation and can be accomplishedusing either a standard technique such as Gaussian elimination,6 or a recursive technique such as theLevinson{Durbin algorithm.4 The latter approach is computationally more e�cient since it exploits thefact that the autocorrelation matrix on the left{hand side of (7) or (8) is both symmetric and a Toeplitzmatrix (i.e. the terms along any diagonal are the same). The algorithm, which is shown in Figure 3,solves the Yule{Walker equations for each value of the model order from m = 0 to m = p. On eachpass through the algorithm the estimated autocorrelation coe�cients are used to generate a single, newcoe�cient, amm. The remaining coe�cients, am1; am2; : : : ; am(m�1), are then generated recursively fromtheir (m� 1)th{order values, a(m�1)1; a(m�1)2; : : : ; a(m�1)(m�1), which are known from the previous passthrough the algorithm. The expression for ami in Figure 3 is called the Levinson recursion, and will beused again later on.The algorithm thus calculates the parameter sets, fE0g; fa11; E1g; fa21; a22; E2g; and so on, for all ofthe lower order �ts, m < p, to the data until the desired solution, fap1; ap2; : : : ; app; Epg, is obtained.Note that m = 0 describes a zeroth{order model which does no prediction at all, so that E0 is simplythe power in the data sequence, s1; s2; : : : ; sN , and this in turn is equal to the zeroth autocorrelationcoe�cient, ~R0, in (6). The intermediate values, km, in Figure 3 are called the re
ection, or partialcorrelation (PARCOR) coe�cients, and can be interpreted as the partial correlation between sn andsn+m holding sn+1; sn+2; : : : ; sn+m�1 constant.Once the coe�cients, ap1; ap2; :::; app, have been obtained, the AR model can be applied to the samedata sequence, s1; s2; : : : ; sN , but in the reverse direction. This is shown in Figure 4, where the valueof the sample, sn�p, is retrospectively \predicted" as a linearly weighted sum of the p future samples,5



sn�p+1; sn�p+2; : : : ; sn: ~sn�p = � pXi=1 apisn�p+iThe error between the actual value and the predicted value in this case is called the backward predictionerror, bpn: bpn = sn�p � ~sn�p = sn�p + pXi=1 apisn�p+i (9)(Note that although this describes the prediction error for sn�p it is denoted by bpn and not bp(n�p)as might intuitively be expected; this peculiar notation is just a mathematical convenience to simplifythe expressions that follow.) Furthermore, the fact that the AR coe�cients were generated using theLevinson recursion in Figure 3 enables the following recursive relationships to be derived (see Appendix)between the forward prediction error in (2) and the backward prediction error in (9):epn = e(p�1)n + appb(p�1)(n�1) (10)bpn = b(p�1)(n�1) + appe(p�1)n (11)These relationships express the pth{order prediction errors for sn and sn�p in terms of their corresponding(p� 1)th{order prediction errors, and lead to a second, superior technique for AR parameter estimationcalled the maximum entropy method (MEM). Like the autocorrelation method described above, themaximum entropy method is a recursive estimation technique based on a least{squares error criterion.However, in the derivation of the Yule{Walker equations, the range of the summation in the expressionsfor E in (3) and ~Rji�jj in (6) implicitly assumes that the data outside the interval, s1; s2; : : : ; sN , arezero. Since this is almost always an unrealistic assumption, the maximum entropy method restricts therange of the summation so as to use only the available data. Furthermore, instead of minimising onlythe forward prediction error power, the maximum entropy method seeks to minimise the mean of boththe forward and backward prediction error powers:E = 12(N � p) NXn=p+1(e2pn + b2pn) (12)subject to the constraint that the AR coe�cients are updated using the Levinson recursion. This con-straint enables the recursive relationships in (10) and (11) to be used, so that (12) can be expanded asfollows: E = 12(N � p) NXn=p+1 ( [e(p�1)n + appb(p�1)(n�1)]2 + [b(p�1)(n�1)+ appe(p�1)n]2 )6



This is a function of the unknown coe�cient, app, and the (p�1)th{order forward and backward predictionerrors, which are known from the previous pass through the algorithm. E can thus be minimised bysetting: dEdapp = 0which yields app = �2 NXn=p+1 b(p�1)(n�1)e(p�1)n , NXn=p+1[b2(p�1)(n�1)+ e2(p�1)n] (13)Using (13) in place of the corresponding expression in the Levinson{Durbin algorithm and adding theextra recursions for epn and bpn yields the Burg algorithm7 shown in Figure 5. An additional step canalso be included in the Burg algorithm that reduces the computational complexity of (13) by calculatingthe denominator recursively:8denp = denp�1[1� a2(p�1)(p�1)] � b2(p�1)(N�p) � e2(p�1)pwhere den0 = 2E0N from (12) and (13).3 SPECTRAL ESTIMATION AND MODEL STABILITYBy rearranging the expression for the forward prediction error in (2) the AR model can be viewed as anall{pole, or in�nite{impulse{response (IIR) �lter whose current output, sn, is a function of both the pmost recent outputs, sn�1; sn�2 : : : ; sn�p, and the current input, epn:sn = ~sn + epn = � pXi=1 apisn�i + epn (14)This is shown in Figure 6. For applications such as EEG analysis, where the output signal is the observedEEG, the input signal is inaccessible and hence unknown. However, if the assumption made at thebeginning of the previous section is correct (i.e. that sn is predictable from a linearly weighted sum ofsn�1; sn�2; : : : ; sn�p), then the predicted values, ~s1; ~s2; : : : ; ~sN , can be interpreted as the true, underlyingsignal, while the actual values, s1; s2; : : : ; sN , can be regarded as these predicted values corrupted byadditive white noise which, being uncorrelated and therefore unpredictable, gives rise to the predictionerrors, ep1; ep2; : : : ; epN . The assumption just referred to can thus be re{phrased with respect to Figure 6,in which it is assumed that the output sequence, s1; s2; : : : ; sN , is the result of using a pth{order ARmodel to �lter a white noise input sequence, ep1; ep2; : : : ; epN . It follows that when �tting an AR model7



to a data sequence, any departure of the prediction errors away from a white noise sequence can be usedto indicate the goodness of �t of the model to the signal.Despite this observation, it is a commonly held misconception that the application of AR modellingto EEG analysis is useful even if the prediction errors are correlated, since they can then be interpretedas the underlying \input signal" which, when �ltered by the AR model, produces the observed EEG.This physiological interpretation of the AR model | whereby both the �lter characteristics and theinput signal are simultaneously revealed | is clearly incorrect, however, since a correlated sequence ofprediction errors simply re
ects the poor �t of the model to the data.Spectral estimationThe AR �lter described by (14) can be speci�ed in the frequency domain by taking the z{transform ofthe original expression in (2). If E(z) and S(z) are the z{transforms of ep1; ep2; : : : ; epN and s1; s2; : : : ; sNrespectively, then: E(z) = A(z)S(z); where A(z) = 1 + pXi=1 apiz�iA�1(z) = S(z)E(z) = 1,(1 + pXi=1 apiz�i) (15)A�1(z) is the AR model's transfer function, usually denoted by H(z). Its frequency response, H(!),is determined by evaluating H(z) along the unit circle in the z{plane, where z = e j!T for a samplingperiod, T . Furthermore, if E(z) is a white noise input sequence then its spectrum, E(!), will be 
at andthe spectrum of the output sequence, S(!) = H(!)E(!), will be equal to H(!) scaled by the constant,E(!) = EpT . In practice, however, E(z) only approximates a white noise sequence and so S(!) can onlybe estimated. This estimate, ~S(!), is given by:~S(!) = EpT, �����1 + pXi=1 apie�ij!T �����2 (16)The assumption on which the AR modelling technique is based can now be re{phrased in the frequencydomain, where it is assumed that the 
at spectrum of the white noise input sequence is \coloured" bythe AR model to produce an output spectrum of the desired shape. Factorisation of the denominatorin (16) also reveals that depending on the values of the AR coe�cients, the denominator may be zero(corresponding to in�nite power) at certain, discrete frequencies. This makes AR modelling particularly8



suited to the types of signal that occur in nature, such as speech, EEG, and seismic data, since these tendto be characterised by their dominant frequencies (i.e. sharply de�ned spectral peaks), rather than by theabsence of power at certain frequencies (spectral notches) which can be shown to be better approximatedby an MA model.9 The more general ARMA model is appropriate if the spectrum is thought to containboth peaks and notches, although this requires an additional set of coe�cients to be estimated for theMA part and involves the solution of complicated non{linear equations.9;10AR spectral estimation often gives a very signi�cant improvement in frequency resolution comparedto the traditional periodogram method as implemented by the fast Fourier transform (FFT).6 The es-timated AR spectrum of a data sequence, s1; s2; : : : ; sN , is a continuous function of frequency and canthus be evaluated numerically at any number of frequencies | uniformly spaced or otherwise | in theinterval, 0:0 � f � 0:5 (where f is normalised with respect to the sampling frequency). Conversely theperiodogram is a discrete spectrum, evaluated only at the N uniformly spaced (i.e. harmonically related)frequencies, fn = n=N , where n = 0; 1; : : : ; N � 1. The spacing between these frequencies is thereforedetermined by the sequence length, N , and if this spacing is large (i.e. the sequence length is short) theperiodogram may fail to resolve spectral peaks that are close together. Application of the periodogrammethod to non{stationary signals such as the EEG thus involves a trade{o� between the requirementsof a short sequence length to ensure stationarity and a long sequence length to ensure good frequencyresolution. The FFT additionally requires N to be a power of two (unlike the Levinson{Durbin and Burgalgorithms), although this constraint is less of a problem in practice.For short sequence lengths, the sparseness of the frequencies, fn, in the periodogram also makes theshape of the spectrum di�cult to discern, particularly if these frequencies do not coincide with thedominant frequencies in the signal. Such ambiguity can be avoided by augmenting the N original datasamples with extra zeroes. The number of zeroes must be such that the extended sequence length is still apower of two, as required by the FFT, so typically N , 3N , or 7N zeroes are used. Zero padding smoothesthe spectrum by interpolating extra frequency values between the N unpadded values, although it doesnot improve the underlying frequency resolution.10To illustrate these points, Figure 7(a) shows the ideal spectrum of a data sequence consisting of threesuperimposed sinusoids at frequencies of 0.10, 0.20, and 0.21 times the sampling frequency, corrupted bywide{band coloured noise. Figures 7(b){(f) are estimates of this spectrum obtained from 64 samples of9



the data sequence, the values of which are tabulated elsewhere.10The periodogram in Figure 7(b) was generated using a 256{point FFT in which the original 64 datasamples were appended with 192 zeroes. The periodogram has failed to resolve the two sinusoids at 0.20and 0.21, and is heavily distorted by sidelobe leakage. The latter e�ect is due to the inherent rectangularwindowing of the data sequence by the FFT, which makes the unrealistic assumption that samples outsidethe sequence are zero. Indeed, the main lobe of the smaller spectral peak at 0.10 in Figure 7(b) is almostobscured by sidelobe leakage from the larger peak at 0.20. Sidelobe leakage can be reduced by applyinga symmetric, tapered window | such as a Hamming or Hanning window11 | to the data sequence priorto performing the FFT, although this unfortunately reduces the frequency resolution of the periodogramstill further. Figure 7(c) shows the 256{point FFT obtained when a Hamming window is applied to theoriginal 64 samples prior to zero padding.The spectra in Figures 7(d){(f) were obtained by �tting a 14th{order AR model to the data sequence.In Figure 7(d) the Levinson{Durbin algorithm was used to estimate the AR parameters, but since theautocorrelation method makes the same zero{valued assumption for data samples outside the sequenceas the periodogram method, the spectrum is smeared and the sinusoids at 0.20 and 0.21 are not resolved.The absence of sidelobe leakage from the spectrum is in contrast to the periodogram method, however,and this can be shown to be due to the implied, non{zero extrapolation of the estimated autocorrelationfunction beyond the values of ~R0; ~R1; : : : ; ~Rp used in the Yule{Walker equations.10 Applying a Hammingwindow to the data sequence prior to using the Levinson{Durbin algorithm enables all three sinusoidsto be resolved, as shown in Figure 7(e). In Figure 7(f) the Burg algorithm was used to estimate the ARparameters. This not only yields the best spectral estimate but also removes the need for windowing,since the maximum entropy method makes no assumptions about samples outside the data sequence.A less obvious advantage of AR spectral estimation over the periodogram method is that very fewcycles or even fractions of a cycle | with a wavelength longer than the sequence length | can often bereliably detected.10 Also the inclusion of a noise term, epn, in the AR model means that the estimatedspectrum is smooth, since its shape depends only on the values of ap1; ap2; : : : ; app used to model thesignal. The absence of a noise term in the periodogram method means that both the signal and noiseare �tted, so that to smooth out random 
uctuations in the raw periodograms due to noise, some formof averaging (e.g. over consecutive, usually overlapping segments) must be used. The main advantage of10



the FFT over AR spectral estimation is its computational e�ciency.StabilityThe interpretation of an AR model as an IIR �lter raises the question of its potential instability. Thisdepends on the values of ap1; ap2; : : : ; app generated by the Levinson{Durbin or Burg algorithm, andalthough both algorithms are guaranteed to yield algebraically stable models, numerical instability canstill arise due to the accumulation of round{o� errors in �nite word length computations. The conditionfor the stability of an AR model is the same as for an IIR �lter, namely that the poles of H(z) in (15)| which correspond to the roots of the polynomial, A(z), in its denominator | all lie on or insidethe z{plane's unit circle. Whether this condition is met can be established using a standard numericaltechnique, such as Laguerre's method,6 to solve the transfer function's characteristic equation:1 + pXi=1 apiz�i = 0 (17)but this is computationally expensive. It can be shown, however, that an alternative condition for an ARmodel's stability is that the magnitude of each re
ection coe�cient is less than or equal to unity:4jkmj � 1; for 1 � m � pInspection of the algorithms in Figures 3 and 5 reveals that an equivalent condition for stability is thatthe prediction error power is non{negative:Em � 0; for 1 � m � pThe stability of the model can thus be monitored during the execution of the Levinson{Durbin or Burgalgorithm at no extra cost. An unstable model can then be made stable by �nding the roots of (17)and either moving the unstable roots onto the unit circle or re
ecting them across it, before �nallyreconstructing the modi�ed AR coe�cients. An unstable root, zi, is moved onto the unit circle usingzi ! zi = jzij, or re
ected across the unit circle using zi ! 1=z�i , where z�i is the complex conjugate of zi.The latter solution has the advantage that the magnitude of the frequency response, as given by (16),remains the same. 11



4 MODEL ORDER ESTIMATIONAn issue that is of central importance to the successful application of AR modelling is the selection of anappropriate value for the model order, p. This depends upon both the subsequent application and thecomplexity of the signal from one segment to the next. In spectral estimation, for example, the accuracyof the estimated spectrum is critically dependent upon the model order that is chosen. Enough polesmust be used to resolve all of the peaks in the spectrum (two poles per sinusoid) with additional polesadded to provide general spectral shaping and to approximate any notches in the spectrum. Too higha value of model order over{�ts the signal and introduces spurious detail such as false peaks into thespectrum, whereas too low a value produces a spectrum that is over{smoothed. Alternatively, the modelorder required for dimensionality reduction in pattern classi�cation problems depends upon such factorsas the distance in input space between the pth{dimensional patterns for each class and their degree ofoverlap.Although the correct model order for a given data sequence is not known in advance, it is desirableto minimise the model's computational complexity by choosing the minimum value of p that adequatelyrepresents the signal being modelled. Determining this value is often based upon a goodness{of{�tterm such as the prediction error power, Ep. In this respect, the recursive nature of the Levinson{Durbin and Burg algorithms is a particularly useful property, as either algorithm can be used to generateprogressively higher order models until the curve de�ned by E1; E2; : : : ; Ep either 
attens out or reducesto an acceptable value. Since the �t of the model improves as the model order increases, however,the curve of prediction error power is a non{increasing function of p and the optimum model order israrely apparent from inspection of the error values alone. For this reason more objective methods formodel order estimation have been proposed that combine a goodness{of{�t term with a cost functionthat penalises some measure of the model's complexity, i.e. some function of p. Such methods includecriteria based on predictive performance such as the Akaike information criterion (AIC),12 the criterionautoregressive transfer function (CAT)13 and the �nal prediction error (FPE) criterion.14 The latter, forexample, is de�ned as: FPE(p) = �N + p+ 1N � p� 1�Epwhere the cost function in parenthesis is a monotonically increasing function of p that penalises higherorder (i.e. more complex) models. The optimum model order is then the value of p for which FPE(p) is12



minimised.Criteria based on stochastic complexity such as the minimum description length (MDL) criterion15and the predictive least{squares (PLS) criterion,16 have also been proposed, along with others based onsingular value decomposition (SVD)9;17 and Bayesian inference.18 A good review of these criteria is givenelsewhere.19The use of the FPE criterion is illustrated in Figure 8 for an automated sleep analysis system20;21 inwhich the coe�cients of an AR model form the input features to a neural network. Sections of EEGwhich were unanimously classi�ed by three human experts as either wakefulness, rapid{eye{movement(REM) sleep, or deep sleep were divided into one{second segments and an AR model was �tted to eachsegment. In total, 4,800 seconds of each class were collected and the corresponding sets of AR coe�cientswere used to train and test the neural network.To determine a suitable value for the AR model order, the Levinson{Durbin algorithm was used tocalculate values of E1; E2; : : : ; E30 for each of the 4,800 seconds from each class. The mean values areplotted for each class as the three solid lines in Figure 8, and it is noticeable that all three curves startto 
atten out after about p = 5.The corresponding values of the FPE are plotted as circles in Figure 8 and give optimummodel orders,as indicated by the arrows, of 6 for wakefulness, 5 for REM, and 3 for deep sleep. These values shouldnot be considered de�nitive, however, since calculating the FPE on a second{by{second basis gives thedistributions of optimummodel order shown in the histograms of Figure 9. These indicate the number ofseconds out of 4,800 for which p = 1; 2; : : : ; 30 is the optimum model order, and demonstrate that if thevalues suggested by Figure 8 are used then much of the wakefulness and REM data will be either over{�tted or under{�tted (this is not true of deep sleep, however, since its histogram is sharply peaked). Itmay thus be more appropriate to use those values that either optimally �t the most data | correspondingto the modes of the distributions in Figure 9 | or over{�t as much data as they under{�t, correspondingto the medians of the distributions.Figure 10 shows a human{scored hypnogram for a whole night's sleep recording. This divides therecording into thirty{second epochs and then assigns each epoch to one of seven classes using a set ofstandardised sleep{scoring rules.22 These classes correspond to wakefulness, movement (when the EEGis too corrupted to be reliably scored), REM, and four stages of progressively deeper sleep. The variation13



in optimum model order on a second{by{second basis is plotted below the hypnogram, and shows boththe drop in model order associated with the initial descent from wakefulness into deep sleep, and thesubsequent rise and fall in model order in phase with the regular waxing and waning of REM and deepsleep.The above example demonstrates the non{trivial nature of the model order selection problem. Moreoversince the number of inputs to a neural network must remain �xed, the model order used for feature ex-traction must also be �xed, regardless of the non{stationarity of the EEG and of the associated variationsin optimum model order with time. A compromise can be found, however, by choosing the value of pthat minimises a criterion appropriate for quantifying the neural network's performance: for example,the classi�cation error rate on a cross{validation data set. In practice the use of model order estimationcriteria is mainly relevant to applications in spectral estimation, where the optimum model order can beestimated and used on a segment{by{segment basis.5 DISCUSSIONThe purpose of this tutorial has been to provide an intuitive and usable introduction to the very popu-lar technique of autoregressive modelling, and to locate this within the wider framework of parametricmodelling techniques in general. The di�erence between adaptive and non{adaptive modelling was ex-plained, along with the related issues of signal stationarity and signal segmentation. The two mostpopular and well{established methods for AR parameter estimation are the autocorrelation method, inwhich the Yule{Walker equations are solved using the Levinson{Durbin algorithm, and the maximumentropy method, as implemented by the Burg algorithm. The correspondence between AR modellingand IIR �ltering highlights the need to monitor the model's stability, and also leads to an understandingof its use in spectral estimation. Indeed, the advantages of AR spectral estimation over the FFT aremanifold, particularly when using the Burg algorithm and when analysing short data sequences of thekind demanded by non{stationary signals.A variation on the Burg algorithm can be obtained by removing the constraint that the AR coe�cientsare updated using the Levinson recursion and minimising the expression for the mean of the forward andbackward prediction error powers in (12) with respect to all of the coe�cients, ap1; ap2; :::; app, rather thanjust app. Algorithms which follow this strategy23;24 tend to yield marginally better spectral estimates14



than the Burg algorithm, but their solutions are computationally more expensive and are not guaranteedto be algebraically stable.To track non{stationarities in the signal on a time scale shorter than the segment size, consecutivesegments can be made to overlap, typically by half their length although in the limit the shift from onesegment to the next could be reduced to a single data sample. However, in such situations it is oftenbetter to use an adaptive model such as the Kalman �lter,3 in which the values of the AR coe�cientsare updated on a sample{by{sample basis, with the update being proportional to the di�erence betweenthe actual value of the current sample and its predicted value using the present set of coe�cients. Theadvantage of adaptive modelling is that it can be applied to non{stationary signals without segmentation,although the disadvantages are that it is computationally more expensive than non{adaptive modelling,and the model order, once chosen, cannot be changed as it can from one segment to the next in non{adaptive modelling. Adaptive models also produce more data than they consume (i.e. p coe�cients persample compared to p coe�cients per N samples for non{adaptive models) so that for some applicationsthe sets of AR coe�cients may need to be averaged, typically every N samples.ACKNOWLEDGMENTSThis paper was written during the course of a research project funded by Oxford Instruments plc throughthe DTI TAPM LINK initiative. The authors would like to thank Dr. Brendan Ruck and Dr. Mark Holtat Oxford University for their valuable comments on the draft of this paper.REFERENCES1. Barlow J S, Methods of Analysis of Nonstationary EEGs, with Emphasis on Segmentation Tech-niques: A Comparative Review, J. Clin. Neurophysiol., 1985, 2(3): 267{304.2. Isaksson A, Wennberg A, Zetterberg L H, Computer Analysis of EEG Signals with ParametricModels, Proc. IEEE, 1981, 69(4): 451{461.3. Skagen D W, Estimation of Running Frequency Spectra Using a Kalman Filter Algorithm, J.Biomed. Eng., 1988, 10(3): 275{279.4. Makhoul J, Linear Prediction: A Tutorial Review, Proc. IEEE, 1975, 63(4): 561{580.15
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ABBREVIATED TITLE FOR USE AS A RUNNING HEADLINE:Parametric modelling of EEGFIGURE CAPTIONS:Figure 1 Techniques for parametric modelling using a rational transfer function and algorithms forautoregressive parameter estimationFigure 2 Linear prediction using a pth{order autoregressive modelFigure 3 The Levinson{Durbin algorithmFigure 4 Forward and backward linear predictionFigure 5 The Burg algorithmFigure 6 The interpretation of an autoregressive model as an all{pole �lterFigure 7 A comparison of spectral estimation methodsFigure 8 The mean values of Ep (solid lines) and corresponding values of the FPE (circles) for 4,800seconds each of wakefulness, REM, and deep sleepFigure 9 The distribution of optimum model order on a second{by{second basisFigure 10 The variation of optimum model order with sleep stage for a 7.5 hour EEG recording
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ARmodelsn�p; : : : ; sn�2; sn�1 ~sn
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Initialisation :E0 = ~R0For m = 1; 2; :::; p :km = �" ~Rm + m�1Xi=1 a(m�1)i ~Rm�i#,Em�1amm = kmami = a(m�1)i + amma(m�1)(m�i); for 1 � i � m � 1Em = (1� k2m)Em�1
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ARmodelsn�p; : : : ; sn�2; sn�1 ~sn
ARmodel~sn�p sn�p+1; sn�p+2; : : : ; sn
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Initialisation :E0 = 1N NXn=1 s2ne0n = b0n = sn; for 1 � n � NFor m = 1; 2; :::; p :km = �2 NXn=m+1 b(m�1)(n�1)e(m�1)n , NXn=m+1[b2(m�1)(n�1) + e2(m�1)n]amm = kmami = a(m�1)i + amma(m�1)(m�i); for 1 � i � m � 1Em = (1� k2m)Em�1emn = e(m�1)n + ammb(m�1)(n�1); for 1 � n � N �mbmn = b(m�1)(n�1) + amme(m�1)n; for 1 � n � N �m
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(a) ideal spectrum (b) periodogram method (c) periodogram methodwith Hamming window
(d) autocorrelation method (e) autocorrelation methodwith Hamming window (f) maximum entropy method
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200010000 wakefulness0 5 10 15 20 25 30 p200010000 REM0 5 10 15 20 25 30 p200010000 deep sleep0 5 10 15 20 25 30 p
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